ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ФЕРРОВАНАДИЯ

Методы определения меди

13217.9-90

Ferrovanadjum Methods for determination of copper

(CT C3B 1213-89)

LOCL

OKCTY 0809

Срок действия c 01.07.91 ae 01.07.2001

Настоящий стандарт устанавливает фотометрический и атомно-абсорбционный методы определения меди в феррованадии при массовой доле ее от 0,01 до 0,6%.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 27349.

1.2. Лабораторная проба должна быть приготовлена в виде порошка с максимальным размером частиц 0.16 мм по ГОСТ 26201.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на измерении оптической плотности окрашенного в коричневый цвет комплексного соединения меди с диэтилдитнокарбаматом свинца после экстракции его хлороформом или четыреххлористым углеродом.

2.2. Аппаратура, реактивы и растворы Спектрофотометр или фотоэлектроколориметр. Кислота серная по ГОСТ 4204, раствор 1:1.

Кислота азотная по ГОСТ 4461 и раствор 1:1.

Кислота уксусная по ГОСТ 61, раствор с массовой концентрапией 100 г/дм3.

Аммиак водный по ГОСТ 3760.

Натрия N. N-диэтилдитиокарбамат 3-водный по ГОСТ 8864.

Свинец уксуснокислый по ГОСТ 1027.

Хлороформ по ГОСТ 20015 или углерод четыреххлористый по FOCT 4.

Раствор диэтилдитиокарбамата свинца в хлороформе или четыреххлористом углероде: 0,2 г уксуснокислого свинца растворяют в воде в присутствии 10 см3 раствора уксусной кислоты.

Издание официальное

Перепечатка воспрещена

К раствору прибавляют 0,25 г диэтилдитиокарбамата натрия, растворенного в 50 см³ воды. Раствор с выпавшим белым осадком переносят в делительную воронку вместимостью І дм³, приливают 500 см³ хлороформа или четыреххлористого углерода и воронку с раствором встряхивают до полного растворения осадка. После разделения фаз нижний слой фильтруют через сухой фильтр в мерную колбу вместимостью 2 дм³. Раствор диэтилдитиокарбамата свинца доливают до метки хлороформом или четыреххлористым углеродом, перемешивают и сохраняют в склянке из темного стекла.

Кислота фтористоводородная по ГОСТ 10484.

Медь металлическая.

Стандартные растворы меди

Раствор А: 0,1000 г металлической меди растворяют при нагревании в 10—15 см³ раствора азотной кислоты, добавляют 30 см³ раствора серной кислоты и выпаривают до выделения паров серной кислоты. Соли растворяют в 100 см³ воды. Раствор переносят в мерную колбу вместимостью 1 дм³, охлаждают, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе А равна 0,0001 г/см³. Раствор Б: 10,0 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе Б равна 0,00001 г/см³.

2.3. Проведение анализа

2.3.1. Навеску пробы массой 0,2 г помещают во фторопластовый стакан или чашку из платины или стеклоуглерода, приливают 15 см³ раствора азотной кислоты и растворяют без нагревания. Затем прибавляют 2 см³ фтористоводородной кислоты, 10 см³ раствора серной кислоты и выпаривают до выделения паров серной кислоты. После охлаждения приливают 20—30 см³ воды, растворяют соли при нагревании и раствор снова охлаждают.

Весь раствор или аликвотную часть, согласно табл. 1, переносят в делительную воронку вместимостью 150—200 см³, доливают водой примерно до объема 50 см³, добавляют аммиак до рН 2

(контроль по индикаторной бумаге).

Таблица 1

Массовая доля меди, %	Вместимость мерной колбы, см ³	Объем вликвотной части раствора пробы, си ²	
От 0,010 до 0,025 включ.	_	Весь раствор	
Св. 0,025 > 0,05 >	100	50	
	100		

2.3.2. Раствор охлаждают и приливают 10 см³ раствора диэтилдитиокарбамата свинца. Делительную воронку встряхивают в течение 2 мин. Затем дают слоям отстояться и органический слой сливают в сухую мерную колбу вместимостью 25 см³.

Экстракцию с 5 см³ раствора диэтилдитиокарбамата свинца повторяют трижды, собирая органический слой в ту же колбу. Объем объединенных экстрактов доливают до метки хлорофор-

мом или четыреххлористым углеродом и перемешивают.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 436 нм или фотоэлектроколориметре в области

светопропускания от 430 до 460 нм.

Раствор при наполнении кювет фильтруют через сухой фильтр. В качестве раствора сравнения применяют хлороформ или четыреххлористый углерод. Измерение оптической плотности следует проводить непосредственно после экстракции.

Массу меди находят по градуировочному графику после вычитания значения оптической плотности раствора контрольного опы-

та из значения оптической плотности раствора пробы.

2.3.3. Для построения градуировочного графика в пять делительных воронок из шести вместимостью 150—200 см³ каждая помещают 1,0, 2,0, 3,0, 4,0 и 6,0 см³ стандартного раствора Б, что соответствует 0,00001, 0,00002, 0,00003, 0,00004 и 0,00006 г меди. Во все воронки приливают по 2 см³ раствора серной кислоты, аммиак до рН 2 и далее поступают, как указано в п. 2.3.2.

Таблица 2

	Допускаемые расхождения. %				
Массовая доля меди, %	Погреш- вость резуль- тетов вывлиза,	двух средних результатов авализа, вы- полненных в различных условиях	двук на- разлель- ных оп- ределений	трех на- радлель- ных опре- делений	результатов анализа стандартного образца от аттестован- ного значе-
O7 0.01 до 0.02 видюч. CB. 0.02 > 0.05 » > 0.05 > 0.1 » > 0.1 > 0.2 » > 0.2 > 0.5 » > 0.5 > 0.6 »	0,004 0,006 0,01 0,02 0,03 0,04	0,005 0,007 0,01 0,02 0,04 0.05	0,004 0,006 0,01 0,02 0,03 0,04	0.005 0,007 0,01 0,02 0,04 0,05	0,003 0,004 0,005 0,01 0,02 0,03

Градуировочный график строят по результатам, полученным после вычитания значения оптической плотности раствора, не содержащего стандартный раствор, из значений оптических плотностей растворов, содержащих стандартный раствор, и соответствующим им массам меди. 2.4. Обработка результатов

2.4.1. Массовую долю меди (X) в процентах вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100, \tag{1}$$

где m_1 — масса меди, найденная по градуировочному графику, г; m — масса навески пробы или масса навески, соответствующая аликвотной части раствора пробы, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл. 2.

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на измерении атомной абсорбции меди в пламени ацетилен-воздух при длине волны 324,8 нм с предварительным растворением пробы в серной кислоте.

3.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр со всеми принадлежностями.

Кислота серная по ГОСТ 4204 и растворы 1:1 и 1:4.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461 и раствор 1:1.

Железо металлическое.

Раствор железа 10 г/см³: 10 г железа растворяют при нагревании в 40 см³ соляной кислоты, приливают 5 см³ азотной кислоты, раствор кипятят до удаления оксидов азота. Охлажденный раствор переносят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают.

Ванадия (V) оксид.

Раствор ванадия 10 г/см³: 17,9 г оксида ванадия растворяют при нагревании в 100 см³ соляной кислоты, приливают 5 см³ азотной кислоты, раствор кипятят до удаления оксидов азота. Охлажденный раствор переносят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают.

Медь металлическая.

Стандартные растворы меди

Раствор A: 0,2500 г меди растворяют при нагревании в 10— 15 см³ раствора азотной кислоты, добавляют 30 см³ раствора серной кислоты 1:1 и выпаривают до выделения паров серной кислоты. Охлаждают, приливают 100 см³ воды и соли растворяют при нагревании. После охлаждения раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе A равна 0,00025 г/см3.

Раствор Б: 20,0 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают. Массовая концентрация меди в растворе Б равна 0,00005 г/см³.

- 3.3. Проведение анализа
- 3.3.1. Навеску пробы массой 0,5 г помещают во фторопластовый стакан вместимостью 100 см³ или чашку из платины или стеклоуглерода, приливают 20 см³ раствора серной кислоты 1:4, 2 см³ фтористоводородной кислоты, нагревают до растворения навески, приливают азотную кислоту до прекращения вспенивания раствора и еще в избыток 2 см³. Раствор выпаривают до выделения паров серной кислоты и охлаждают, затем соли растворяют в 20 см³ воды. После охлаждения раствор переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Атомную абсорбцию меди измеряют параллельно в растворе контрольного опыта, растворе пробы, растворах для построения градуировочного графика, растворе стандартного образца при длине волны 324,8 нм в пламени ацетилен-воздух.

- 3.3.2. После вычитания значения атомной абсорбции раствора контрольного опыта из значения атомной абсорбции раствора пробы находят массовую долю меди в пробе методом сравнения со стандартным образцом с химическим составом, соответствующим требованиям настоящего стандарта, или методом добавок, или методом градуировочного графика.
- З.З.2.1. При применении метода сравнения со стандартным образцом навеску образца проводят через все стадии анализа, как указано в п. 3.3.1.
- 3.3.2.2. При применении метода добавок к навеске пробы добавляют такое количество стандартного раствора меди, чтобы значение атомной абсорбции раствора пробы с добавлением стандартного раствора составляло не более двукратного значения атомной абсорбции раствора пробы и находилось в линейном днапазоне градуировочного графика. Далее анализ проводят по п. 3.3.1.
- 3.3.2.3. При применении метода градунровочного графика в стаканы помещают растворы ванадия и железа в количествах, соответствующих их содержаниям в пробе, стандартный раствор меди согласно табл. 3. В одии стакан стандартный раствор не добавляют. Во все стаканы помещают по 20 см³ раствора серной кислоты 1:4 и далее поступают, как указано в п. 3.3.1.

Градунровочный график строят по результатам, полученным после вычитания значения абсорбции раствора, не содержащего стандартный раствор меди, из значений абсорбции растворов, содержащих стандартный раствор, и соответствующим им массам меди.

Таблица 3

Массовая доля меди, %	Масса медя, мг	Стандартный раствор меди	Объем стан- дартжого раст- вора, см ³
От 0,01 до 0,1 включ.	0,05-0,5	Б	1-10
Св. 0,1 > 0,6 >	0,5-3	A	2-12

3.4. Обработка результатов

 3.4.1. Массовую долю меди (X₁) в процентах, определяемую методом сравнения, вычисляют по формуле

$$X_1 = \frac{\hat{A}(D-D_1)}{D_2-D_1},$$
 (2)

где \widehat{A} — аттестованное значение массовой доли меди в стандартном образце, %;

D— значение атомной абсорбщии раствора пробы;

 D₁ -значение атомной абсорбции раствора контрольного опыта;

D₃ — значение атомной абсорбции раствора стандартного образиза

 3.4.2. Массовую долю меди (X₂) в процентах, определяемую методом добавок, вычисляют по формуле

$$X_2 = \frac{m_2(D-D_1)}{(D_2-D)m} \cdot 100,$$
 (3)

где та - масса меди, добавленная к навеске пробы, г;

 — значение атомной абсорбции раствора пробы без добавления стандартного раствора;

D₁ — значение атомной абсорбции раствора контрольного опыта:

D₂ — значение атомной абсорбции раствора пробы с добавлением стандартного раствора;

т — масса навески пробы, г.

 3.4.3. Массовую долю меди (X₃) в процентах, определяемую методом градуировочного графика, вычисляют по формуле

$$X_8 = \frac{m_3}{m} \cdot 100,$$
 (4)

где т. — масса меди, найденная по градуировочному графику, г; т. — масса навески пробы, г.

 3.4.4. Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл. 2.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. Г. Мизин, Т. А. Перфильева, С. И. Ахманаев, Л. М. Клейнер, Г. И. Гусева
- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 04.05.90 № 1099
- 3. Стандарт соответствует СТ СЭВ 1213-89
- 4. B3AMEH FOCT 13217.9-79
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 4—84 FOCT 61—75 FOCT 1027—67 FOCT 3760—79 FOCT 4204—77 FOCT 4461—77 FOCT 8864—71 FOCT 10484—78	2.2 2.2 2.2 2.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 2.2, 3.2
FOCT 20015-74 FOCT 26201-84 FOCT 27349-87	1.2 1.1